Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361866

RESUMO

Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores' depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores' depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion.


Assuntos
Cálcio , Distrofias de Cones e Bastonetes , Camundongos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Cálcio da Dieta , Modelos Animais de Doenças , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sódio , Células Fotorreceptoras Retinianas Cones/metabolismo
2.
Dalton Trans ; 40(16): 4223-9, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21373665

RESUMO

Metallated meso-tetrakis(N-methyl-4-pyridyl)porphyrin (MTMPyP) and 5,11,17,23-tetrasulfonato-25,26,27,28-tetrakis-(hydroxylcarbonylmethoxy)-calix[4]arene (C(4)TsTc) were used as key components for building up discrete supramolecular entities starting from the formation of the template species MTMPyP:C(4)TsTc (1 : 4, M = Cu, Zn). The stepwise addition of further amount of porphyrin allows the facile non-covalent synthesis of discrete supramolecular entities (2 : 4 and 3 : 4) which can be built up just by programming the right stoichiometric addition of the proper porphyrin. The redox potentials of these supramolecular complexes in aqueous media, as well as those of the parent metalloporphyrins, have been characterized by using square wave voltammetry technique. The use of the simulation procedure leads us to establish the electrochemical steps involved in the redox processes for each supramolecular species, evidencing multistep electron reductions which were not experimentally resolved clearly because of their closeness. The most striking result is that the electrochemistry of each of these supramolecular complexes is different from that of the parent components. This "anomalous" behavior can be explained only considering each of these supramolecular complexes as a unique entity, in which such an internal electronic communication might occur. The formation of the 1 : 4 supramolecular complex produces a negative shift as to the metallated porphyrin redox potentials of about 30 mV. In the case of 2 : 4 and 3 : 4 species, the redox potentials progressively shifts towards more positive values by about 10-15 mV for each complexation step.


Assuntos
Metaloporfirinas/química , Água/química , Cobre/química , Eletroquímica , Oxirredução , Soluções , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...